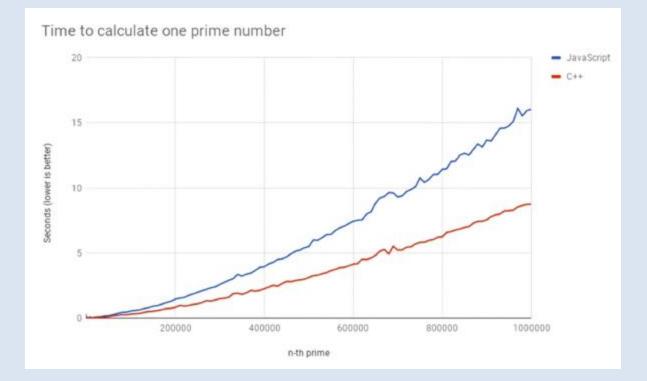

HydroSuite

Programming Languages

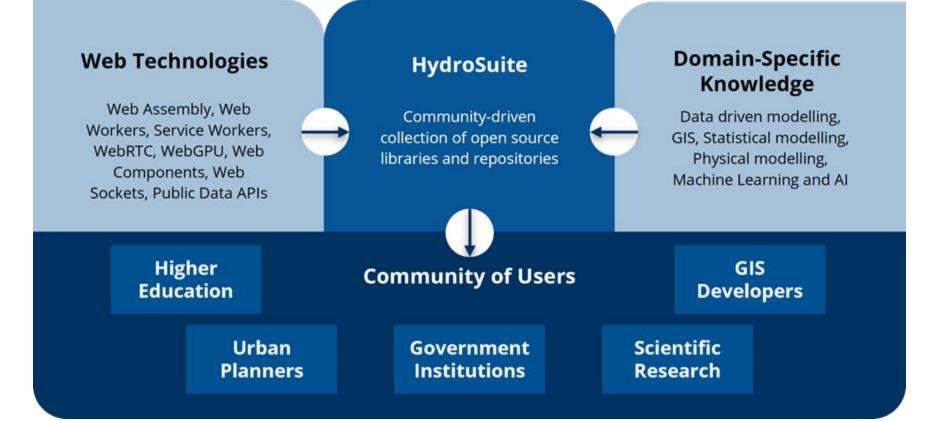

Most used programming languages among developers worldwide as of 2023

https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages

Web Performance

Web Technologies

WebGL / WebGPU	Web Assembly	WebXR / WebVR	WebCL / Web Workers	Web SQL / Web Storage
 Graphics 	• Desktop	 Augmented 	• Computing	• Large-scale
Library	Languages	Reality	Library	Storage
• GPU	Native	• Virtual	Parallel	Offline
Acceleration	Performance	Reality	Processing	Applications



HydroSuite — Collection of Open Source Tools, Libraries, Repositories					
DATA	COMPUTING	COMMUNICATION	COMMUNITY PORTALS		
Flood-ML	HydroLang	RasterJS	EarthAl Hub		
Flood Event DOM	HydroLang-ML	Hydro3DJS	HLM Web		
IS Ontology	HydroLang-BMI	Instant Expert	HydroLSTM		
WaterBench	HydroCompute	GeospatialVR	HydroLang Models		
lowaRain	HydroRTC	Watershed Delineation	Training Repos		

✓ Collection of web-based software for hydrology research and education

 Covering client-side and server-side technologies for complete hydrologic workflows

HydroLang

- A web-based open-source programming framework for hydrological and environmental analyses
- ✓ Entirely client-side operation, no server-side dependency
- \checkmark Scalable and upgradable
- \checkmark Easy to use and modify
- Community oriented modular design for expansion
 - ✓ Special GitHub repo
 - ✓ UI Hackathon

HydroLang

Web-based Hydrological Programming Framework

https://github.com/uihilab/HydroLang

HydroLang ML - Markup Language

Web Component Library for Hydrological and Environmental Sciences

<hydrolang-ml> <analyze-mod method="someFunctionName"> <parameters-here someAtrr="Some Attribute"></parameters-here> <arguments-here somArgs="someArguments"></parameters-here> <arguments-here> <arguments-here>[1,2,3,4]</arguments-here> </aralyze-mod> </hydrolang-ml>

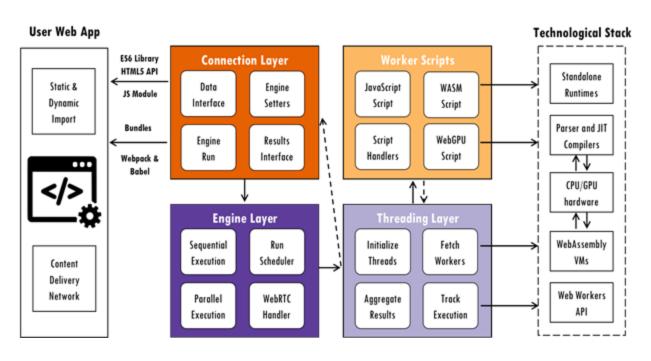
<data-mod method="transform">

cleaned_usgs_data1" >/parameters-here>
<arguments-here type="ARR" keep='["datetime", "value"]'></arguments-here>
</data-mod>

https://github.com/uihilab/HydroLang-ML

BMI-JS

- The Basic Model Interface
 (BMI) is a standardized set of functions that allows coupling of models to models and models to data.
- \checkmark The BMI is developed by the
 - Community Surface Dynamics
 - Modeling System (CSDMS).

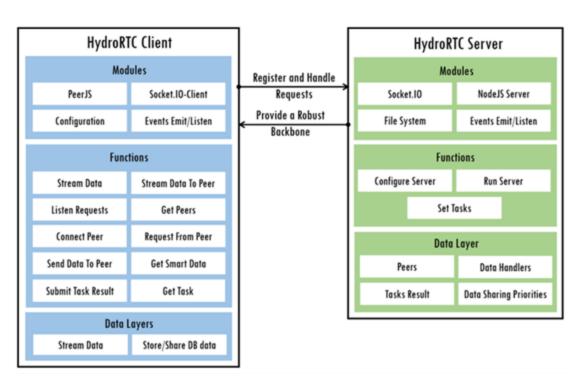

https://github.com/uihilab/bmi-js

BMI languages Language Specification Example implementation bmi-c bmi-example-c C bmi-cxx C++ bmi-fortran Fortran bmi-example-fortran bmi-java Java bmi-python Python bmi-example-python Community-contributed BMI languages Specification Example implementation Language Javascript bmi-js bmi-example-js

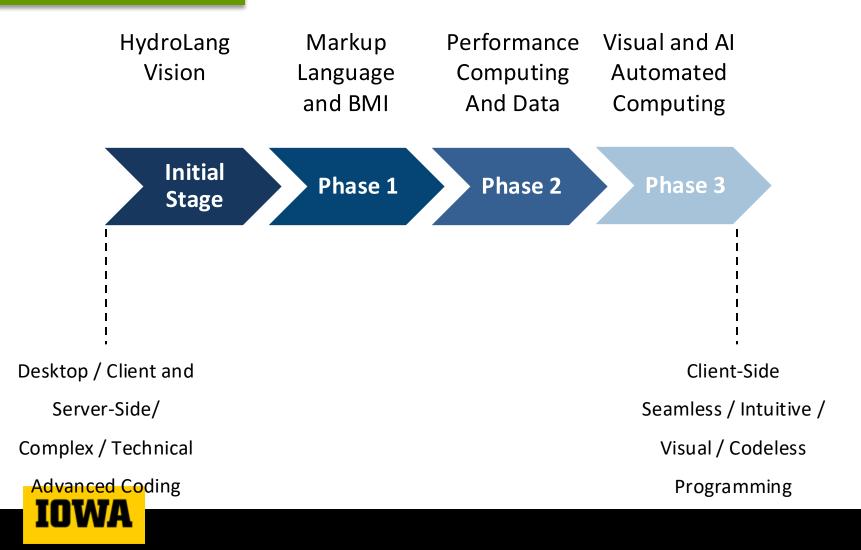
https://github.com/uihilab/bmi-example-js

HydroCompute

- Multi-CPU and GPU
 Based Parallel
 Computing Library for
 Hydrology
- Community oriented modular design for expansion
 - ✓ Special GitHub repo
 - ✓ UI Hackathon


https://github.com/uihilab/HydroCompute

HydroRTC


- Real-time communication
 library for decentralized
 server-side applications
- Enables data streaming,
 real time data sharing, and
 hydrologic data
 interpretation
- Can be used for
 deployment of largescale
 applications

IOWA

https://github.com/uihilab/HydroRTC

HydroSuite Vision

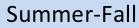
AI-Assisted Programming

- AI Chatbot
- Code Helper
- Code Sandbox

Visual Programming

• Plug & Play

• Modular


• Building Blocks

Automated AI Programming

- Voice Enabled
- Visual Editor
- Al Research Agent

Fall-Spring

IOWA

Data Retrieval

Objectives

- Understanding different data types commonly used in hydrology
- Learning about the multiple data collection methods available
- Recognizing the most common data formats
- Hands on data retrieval from public API's

Tools and Libraries

Web-Based Libraries for Data Retrieval

- HydroLang.js (main data connection)
- Python cURL (data manipulation and analysis)

Tools for Development

- VSCode
- Online Resource (Stackblitz for JS)
- Google Colab (Python)

Links for development

Tutorial links (JS):

HydroLang: https://hydroinformatics.uiowa.edu/tutorials/hydrolang/

HydroRTC: https://hydroinformatics.uiowa.edu/tutorials/hydrortc/ HydroCompute:

https://hydroinformatics.uiowa.edu/tutorials/hydrocompute/

Other links (JS and Python)

Google Earth Engine: <u>https://earthengine.google.com/</u>

Google Colab (Python) : <u>https://colab.research.google.com/</u>

Example Capstone Projects

- Real-time Streamflow Monitoring Dashboard

- Water Quality Analysis Tool
- Climate Change Data Analysis and Visualization
- Watershed Management Analysis Tool
- Drought Monitoring and Analysis

Quick example:

https://hydroinformatics.uiowa.edu/lab/hydrosuite/hydrocomp ute/cs2/

Your ideas?

Part 1 - Introduction to Data Retrieval

Introduction

- Having the correct data is important for any type of modelling
- We can have a positive or negative impact in the decision-making if we are dealing with incorrect information

The Data Retrieval Process

- Collection
- Processing
- Parsing
- Connection to API's

Data Collection

- The process of gathering and collecting measurable information on variables of interest
- Involves the use of different techniques such as surveys, experiments, observations, and data gathering through sensors and web scraping
- Most crucial step for actionable insights

Data Processing

- Transform, analyze, and generate useful info from raw data
- Stages: data cleaning, transformation, integration, and aggregation
- Processing through filtering, sorting, normalizing, and summarizing data
- Purpose of transforming info to meaningful usable format

Data Parsing

- Process of analyzing data and convert to usable formats
- Interpret and reorganize data to usable formats-JSON,XML,CSV or text
- Tokenization, syntax analysis, semantic analysis as techniques
- Data extraction, transformation, integration and communication

Data APIs

- Connect with sources around the world for different formats and scopes
- Accessible anywhere/everywhere through the internet
- Reliability based on the data source and provider
- Most common used way to access data

Discussion

What data types do you commonly use in your field?

Part 2 - Data Types in Hydrology/Environmental Sciences

Data Types

- Time series data
- Spatial information
- Remote sensing
- Water quality

Timeseries

• Observations running for a specified period of time for a particular variable or observation

Examples: water levels, precipitation records, nitrogen concentrations, particulate concentrations, etc.

• Point data: a particular time series for a particular timeframe over a specified time

Spatial Data

- GIS outputs from imagery or analysis
- Layers that contain information for time snapshots

Examples: GIS layers, remote sensing images

• **Remote sensing:** satellite imagery, radar data

Water Quality

- Chemical concentrations
- Pollutant levels
- Point source locations

Examples: Eutrophication studies, environmental Impact Assessment

Location-specific, data might not be as reliable!

Example Use Cases

Time Series Data

- Streamflow monitoring, rainfall patterns, groundwater levels

Spatial Information

- Watershed delineation, floodplain mapping, landuse cover analysis

Remote Sensing

- Water body satellite imagery, snow cover analysis, soil moisture estimation

Water Quality

- Pollution source identification, drinking water safety

Part 3a - Data Collection Methods

Methods

- Ground-based sensors
- Satellite observations
- Manual sampling

Ground-based sensors

- **Types:** rain gauges, stream gauges, soil moisture sensors, groundwater level sensors.
- Data Collection: Real to near-real time data collection
- Accuracy and Calibration: who deployed? What is the calibration process? Source?
- **Challenges:** maintenance, susceptibility, spatial coverage

Satellite Observations

- Wide Spatial Coverage: surface water bodies, snow coverage, soil moisture, vegetation
- **Technologies:** optical imaging, radar, LIDAR at different temporal resolutions
- Data Integration: coupling ground-based and radar-based data for accuracy and assessment
- **Challenges:** cloud cover interference, complex data processing and interpretation

Manual Sampling

- Accuracy and Specificity: pH, turbidity, nutrient concentrations, contaminants
- Flexibility: Pollutant source identification or localized assessment
- Hands-On Verification: observation and verification of conditions
- **Challenges:** labor intensive, time consuming, limited coverage

Part 3b - Data Formats and Conversions

Examples of Data Formats

Common (easy access) data formats

 JSON, XML, CSV, geoJSON, Shapefiles

Features

- Ease of use and compatibility everywhere
- High performance throughout

Common in the domain

- netCDF, GRIBB, Shapefiles, HDF5

Features

- Multiple variables and temporal resolutions packed
- Not as easy to unpack

JSON and geoJSON

- JavaScript Object Notation: used as steering files, data formats for streaming data
- Main format for data exchange on the web, *easy and scalable*
- Parse throughout environments, in-built formatting

{ "type": "FeatureCollection",
 "features": [{ "type": "Feature",
 "geometry": { "type": "Point",
 "coordinates": [-91.5302,
 41.6611]}, "properties": {
 "name": "Iowa City" } }]

XML

- eXtensible Markup Language: structured and customizable
- Supports nested data structures through a hierarchical format
- Configuration files, document storage, etc
- Examples: WaterML, HydroLangML...

<note>

<to>WaterSoftHack</to> <from>lowa</from> <heading>Reminder</heading> <body>We got training this week team!</body> </note>

Shapefiles and GIS formats

- Representations of spatial data through vectorized formats
- Rasters, Shapefiles, Databases, KML, geoJSON, TIFF and geoTIFF, GML
- Combination of spatial features with attribute data

Gridded Formats

- NetCDF, GRIBB, HDF5, and others
- Storing large amounts of data through *efficient stacks of spatio-temporal layers*
- Widely supported across scientific domains
- **Metadata rich,** ensuring proper interpretation

Conversions

- Extract features and information prior to making an analysis
- What is the easiest format for my end use case?

Raw Data -> Usable format -> Get insights

- How can I showcase my data? Maps, charts, other visual formats?
- What is my workflow looking like?

Part 4 - Public APIs and Data Resources

Application Programming Interfaces

- An API facilitates automated retrieval and integration of data from public sources
- **Promotes easy access** through the use of web technologies

Examples: USGS, NOAA, NASA, EPA, CUAHSI HydroShare

Different variables in different locations, need to narrow down specifics!

Application Programming Interfaces

Benefits:

- Real time updates and data sharing
- Comprehensive datasets
- Ease of integration into applications

Access depends on the programming interface!! Tools: Postman, cURL, Swagger, jQuery, etc...

Web APIs

REST (Representational State Transfer):

- Uses standard HTTP methods (GET, POST, PUT, DELETE)
- Typically in JSON or XML formats
- Scalability, simplicity, and statelessness

SOAP (Simple Object Access Protocol)

- XML for message passing (WaterML)

Workflows for Obtaining Data

Accessing a Dataset or Resource

- Register and Obtain an API Key
- Authentication
- Send a Request
- Receive a Response
- Handle Errors

Types of Responses

- **200** OK
- **201** Resource created
- 400 Bad Request
- 401 Unauthorized
- **404** Not Found
- 500 Internal Server Error

Example - Explore different APIs

USGS Water Services

https://waterservices.usgs.gov/

NOAA APIs

https://www.weather.gov/documentation/services-web-api

CUAHSI HydroShare APIs

https://www.hydroshare.org/search/

Other Data Access

- **SFTP (Secure File Transfer Protocol):** Transferring large datafiles from one server to another (personal PC, etc)
- THREDDS Data Server: https://www.unidata.ucar.edu/software/tds/
- GeoServer: https://geoserver.org/
- NASA EarthData: <u>https://search.earthdata.nasa.gov/search</u>
- Data.gov DEMs: <u>https://catalog.data.gov/dataset/?tags=sediment-transport&_tags_limit=0</u>
- European Centre for Medium-Range Weather Forecasts: https://www.ecmwf.int/en/forecasts/datasets
- Neon: <u>https://www.neonscience.org/</u>

Part 5 - Data Retrieval and Cleaning

Example - Download data from USGS

USGS Endpoints: instant values, daily values, groundwater

Access URL: <u>https://waterservices.usgs.gov/nwis/dv/</u>?<arguments>

- Arguments contains all the location/time specific variables
- Its a REST API that retrieves data using GET requests
- Available for multiple variables

Example - Download data from CUAHSI

Endpoints: Multiple endpoints, multiple use cases

Access URL: https://hydroportal.cuahsi.org/ipswich/ ?https://www.access.org/ipswich/ ?https://www.access.org/ ?https://wwww.access.org/ ?https://www.access.org/ ?https://www.access.org/ ?https://www.access.org/ ?https://wwww.access.org/ ?https://www.access.org/ ?https://www.access.org/ ?https://wwww.access.org/</access.org/

- Access of multiple sources through SOAP requests
- Has a unique entry point that allows multiple actions to be applied

Resources

- HDF5 Web Viewer: <u>https://myhdf5.hdfgroup.org/</u>
- GeoTIFF File Viewer: <u>https://app.geotiff.io/</u>
- Open Data API's (alooot of different resources to learn and be more comfortable with data): <u>https://github.com/public-apis/public-apis</u>

Next Hour - Hands On Training

